GAN Theory
Modifyingthe Optimization of GAN
题目 | 内容 |
GAN | |
DCGAN | |
WGAN | |
Least-square GAN | |
Loss Sensitive GAN | |
Energy-based GAN | |
Boundary-seeking GAN | |
Unroll GAN |
Different Structure from the Original GAN
题目 | 内容 |
Conditional GAN | |
Semi-supervised GAN | |
InfoGAN | |
BiGAN | |
Cycle GAN | |
Disco GAN | |
VAE-GAN | |
LAPGAN | 用了多个GAN可生成高分辨率图像 |
GAN Application
pix2pix | |
题目 | 内容 |
Image-to-Image Translation with Conditional Adversarial Networks | image2image、paired Image-to-Image Translation |
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs |
image2imageHD、paired Image-to-Image Translation |
CycleGAN | Unpaired Image-to-Image Translation |
Disco GAN | 侧重分析双向映射,或者说 bijective mapping 的约束:避免 mode collapse 进而提升生成样本质量的 |
DualGAN | 生成器和判别器都和pix2pix一样。 用了wgan来训练。 |
注:最后三篇论文的想法十分相似,几乎可以说是孪生三兄弟 |
text2image | |
题目 | 内容 |
人脸生成 | |
题目 | 内容 |
Face-generator - Generate human faces with neural networks | |
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis | 根据单一侧脸生成正面逼真人脸 |
NEURAL FACE | use DCGAN、链接:https://carpedm20.github.io/faces/ |
注:DCGAN、WGAN这类都可以生成人脸 |
按生成的图片种类分 | |
题目 | 内容 |
生成卧室 | DCGAN、WGAN |
生成动漫头像 | DCGAN |